The Reliability of IGCC Power Generation Units

ACHEMA 2006

Frankfurt, 18th May 2006

Chris Higman, Syngas Consultants Ltd.
Sal DellaVilla, Bob Steele, Strategic Power Systems, Inc.

Overview

- SPS's ORAP database
- Project goals and methodology
- Project schedule
- Some preliminary findings
- Conclusions

SYNGAS CONSULTANTS LTD.

- Specialists in syngas production from gasification and steam reforming
- Activities
 - Process integration
 - Project consultancy
 - Feasibility studies
 - Training seminars
 - Plant audits

Who is SPS? What is ORAP?

- An Information Technology & Reliability Engineering Company Since 1987
- Support the Electric Power & Industrial Process markets...
- Recognized leader through ORAP... the Most Comprehensive Global Database in Our Industry ... Unbiased & Accurate
 - Monitors Gas & Steam Turbine Plants . . . ISO 9001 Certified
 - Database in place since 1976
 - Over 2,000 Units Worldwide, Over 20,000 unit years of operating information available . . .
 - Strong Influence on Industry Standards . . . ISO 3977 Standard
- Provide "Knowledge Based" Engineering Services & Software Products focused on:
 - Data analysis and evaluation... Availability & Reliability
 - Knowledge transfer... Benchmarking & "Best Practices"
 - Remote Monitoring... Real-Time Data for Maintenance & Life Planning

Reliable Data for Effective Decision Support through ORAP

Where is IGCC now?

✓ Superior environmental performance

✓ Higher efficiency

➤ Installed cost

? Reliability

Effect of Reliability

Current Reliability Performance

Plant A

Plant B

- On stream
- Not required/despatched
- Planned outage
- Unplanned outage

Reliability - BP, Gelsenkirchen

Project Goals

- Establish reliable, evidence-based expectation for IGCC availability
 - Using public domain reliability data
 - Using actual plant data
 - Using common definitions
- Update prediction models with "best-of-class" plant data
- Identify strengths and weaknesses
 - Inside/outside core gasifier unit

Public domain literature

Potential Participating Plants

- 14 IGCCs
 - 8 solid feedstock
 - 6 liquid feedstock
- 11 chemical and refinery plants
 - 3 solid feedstock
 - 8 liquid feedstock

Include some chemical plants

- Increases sample for improved validation
- Provides representative data on
 - Oxygen supply
 - Gasification
 - Gas treatment
- Ammonia plants will supply data on CO₂ capture (and compression where integrated urea plant)

Project Schedule

✓ Data base structure and codes July 2005

✓ Preliminary findings Oct 2005

Plant interviews ongoing

Preliminary report
 June 2006

 Detail evaluation & prediction model End 2006

Some preliminary findings

- Air Separation Units
- Gasification Units
- Acid Gas Removal/ Sulfur Recovery Units
- Combined Cycle Units
- Overall Picture

NERC GADS Data 2000-2004

	Service Factor (%)	Capacity Factor (%)	Availability Factor (%)
Gas-fired boilers	40.0	23.1	87.5
Oil-fired boilers	41.1	27.5	86.5
Coal-fired boilers	83.2	71.9	87.6
Aero-derivatives	5.1	3.7	93.0
Single Cycle GTs	4.3	3.8	93.1
Combined Cycle GTs	Not available	Not available	Not available

SYNGAS CONSULTANTS LTD

Source: DellaVilla, 2004

ASU: Public Domain Data

Unplanned outages

Gasification

Average of four plants

Acid Gas Removal

Average of Four Plants

ORAP – Forced and Scheduled Outage

ORAP Data 2000-2005

Simple Cycle Plant Statistics

	Service Factor (%)	Availability (%)	Reliability (%)
Aeroderivative Utility	34.7	92.1	96.5
Non-Utility	55.3	94.3	97.9
E-Class Utility	18.2	94.1	98.8
Non-Utility	62.0	95.0	99.0
F-Class Utility	60.6	90.1	97.6
Non-Utility	55.2	91.7	98.1

SYNGAS CONSULTANTS LTD

Source: DellaVilla, 2004

Power Block: Public Domain Data

Note: Wabash data estimated from "Syngas not required" Data for some plants/years incomplete

Overall Outage Data - Coal IGCCs Average of four plants

Italian Resid IGCC Configurations

	ISAB (Sicily)	Sarlux (Sardinia)	api Energia (Falconara)
ASU Integration	None (Air Liquide)	None (Air Liquide)	None
Gasifier Feed rate Pressure AGR	GE (2 gasifiers) 3168 t/d 67 bar MDEA	GE (3 gasifiers) 3559 t/d 38 bar Selexol	GE (2 gasifiers) 1440 t/d ~60 bar Selexol
Gas turbine	Siemens 2 x V94.2K	GE 3 x STAG 109E	Alstom 1 x 13E2
Power output	512 MW	551 MW	241 MW
Co-products		40,000 Nm³H₂/h 180 t/h steam	65 t/h steam

Performance of Italian Resid. IGCCs

Sarlux IGCC 2002 Operation

Improvement Targets for Coal IGCCs

Summary

- "Maybe folks are now beginning to realize that there is more to reliability than just a spare gasifier."
- The introduction of advanced technology anywhere in the system has its attendant risks.
- Attention to detail in "standard" auxiliary units can contribute substantially to IGCC reliability.
- ORAP RAM tracking can help identify the areas for improvement
- Implementation of "lessons learned" at all levels is key to success.

Thank you

Any questions?

chris@syngas.co.uk

http://www.higman.de/gasification/index.htm

